Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 15 2019 21:33:58
%S 1,1,2,1,5,4,1,9,18,8,1,14,50,56,16,1,20,110,220,160,32,1,27,210,645,
%T 840,432,64,1,35,364,1575,3150,2912,1120,128,1,44,588,3388,9534,13552,
%U 9408,2816,256,1,54,900,6636,24822,49644,53088,28800,6912,512,1,65,1320,12090,57750,153426,231000,193440,84480,16640,1024
%N Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UU's (doublerises) (n >= 1; 0 <= k <= n-1).
%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps.
%C Row sums yield A002212.
%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
%F T(n,0) = 1;
%F T(n,1) = (n-1)(n+2)/2 = A000096(n-1);
%F T(n,k) = A126182(n,n-k), i.e., triangle is mirror image of A126182.
%F Sum_{k=0..n-1} k*T(n,k) = A128743(n).
%F T(n,k) = (binomial(n,k)/n)*Sum_{j=0..k} binomial(k,j)*binomial(n-k+j, j+1) (1 <= k <= n).
%F G.f.: G - 1, where G = G(t,z) satisfies G = 1 + tzG^2 + zG - tz.
%e T(3,2)=4 because we have UUUDDD, UUUDLD, UUUDDL and UUUDLL.
%e Triangle starts:
%e 1;
%e 1, 2;
%e 1, 5, 4;
%e 1, 9, 18, 8;
%e 1, 14, 50, 56, 16;
%p T:=proc(n,k) if k=0 then 1 else binomial(n,k)*sum(binomial(k,j)*binomial(n-k+j,j+1),j=0..k)/n fi end: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
%t m = 12; G[_] = 0;
%t Do[G[z_] = 1 + t z G[z]^2 + z G[z] - t z + O[z]^m, {m}];
%t CoefficientList[#, t]& /@ CoefficientList[G[z], z] // Rest // Flatten (* _Jean-François Alcover_, Nov 15 2019 *)
%Y Cf. A000096, A002212, A126182, A128743.
%K nonn,tabl
%O 1,3
%A _Emeric Deutsch_, Mar 30 2007