login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128677
Least k>p such that (kp)^3 divides (p-1)^(kp)^2+1 for prime p = A000040(n).
20
19, 41, 29, 23, 79, 41617, 20939, 47, 40427, 4093, 4441, 2543, 1033, 659, 2612032921, 394502321, 14958421, 17957, 569, 14747, 12641, 167, 174263, 100493, 285629
OFFSET
2,1
COMMENTS
For every prime p>2, p^3 divides (p-1)^(p^2)+1 and furthermore p divides all numbers n>1 such that n^3 divides (p-1)^(n^2)+1.
a(27)>10^15. - Max Alekseyev, Nov 30 2017
Some further terms: a(28)-a(36) = {857, 3271, 7243979, 509, 263, 43019, 38921, 2683, 312055091}. a(38)-a(43) = {7499, 88588425539, 9689, 359, 1087, 383}. a(45)-a(61) = {931417, 40597, 2111, 2677, 14983, 261061, 1302937, 479, 17935703, 503, 4227137, 39398453, 2153, 1627, 1109, 28663, 1699}. a(63)-a(69) = {1229, 1867, 78877, 500861, 1987, 62683, 2777}. a(71)-a(75) = {275884327, 719, 44041, 3122698559, 15161}. a(77)-a(80) = {907927, 202471, 5788837, 16361}.
a(n) <= A177996(n).
A000040(n) divides (a(n) - 1)/2. The quotients (a(n)-1)/2/A000040(n) are listed in A136374.
FORMULA
a(n) = smallest prime divisor of (p-1)^(p^2)+1 other than p, where p=A000040(n).
EXAMPLE
a(2) = A127263(3)/3 = 57/3 = 19.
MATHEMATICA
a[n_] := Module[{p, k}, p = Prime[n]; k = p + 1;
While[! Divisible[(p - 1)^(k p)^2 + 1, (k p)^3], k++]; k];
Table[a[n], {n, 2, 15}] (* Robert Price, Mar 23 2020 *)
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Mar 30 2007, Mar 31 2007, Apr 09 2007
EXTENSIONS
a(16)-a(26), a(39), a(74) from Max Alekseyev, May 16 2010
STATUS
approved