Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 12 2021 23:54:21
%S 1,1,-3,3,5,-18,15,24,-75,57,86,-252,183,262,-744,522,725,-1998,1365,
%T 1852,-4986,3336,4436,-11736,7719,10103,-26322,17067,22040,-56682,
%U 36306,46336,-117867,74700,94378,-237744,149277,186926,-466836,290706,361126,-895014
%N Expansion of 3 * (b(q^2)^2 / b(q)) / (c(q)^2 / c(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%H G. C. Greubel, <a href="/A128636/b128636.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of (psi(q)^3 / psi(q^3)) / (phi(-q^3)^3 / phi(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.
%F Expansion of (eta(q^6) / eta(q)) * (eta(q^2) / eta(q^3))^5 in powers of q.
%F Euler transform of period 6 sequence [ 1, -4, 6, -4, 1, 0, ...].
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v* (1-v)* (9-8*u) + (u-v)^2.
%F G.f.: Product_{k>0} (1 - x^(6*k)) / (1 - x^k) * ((1 - x^(2*k)) / (1 - x^(3*k)))^5.
%F A123633(n) = a(n) unless n = 0. Convolution inverse of A128641.
%F Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = -(3/8)*sqrt(3) + (3/8)*sqrt(9 + 6*sqrt(3)). - _Simon Plouffe_, Mar 02 2021
%e G.f. = 1 + q - 3*q^2 + 3*q^3 + 5*q^4 - 18*q^5 + 15*q^6 + 24*q^7 - 75*q^8 + ...
%t eta[x_] := x^(1/24)*QPochhammer[x]; A128636[n_] := SeriesCoefficient[(eta[q^6]/eta[q])*(eta[q^2]/eta[q^3])^5, {q, 0, n}]; Table[A128636[n], {n, 0, 50}] (* _G. C. Greubel_, Aug 21 2017 *)
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x^3 + A))^5 * eta(x^6 + A) / eta(x + A), n))};
%Y Cf. A123633, A128641.
%K sign
%O 0,3
%A _Michael Somos_, Mar 16 2007