Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 09 2023 07:25:21
%S 1,121,400,961,116281,2989441,7958041,361722361,962922961,1902442689,
%T 1891467081,5168743489,4755619521,5215583961,6835486329,7496615889,
%U 13884144561,13884144561,35018011161,120776405841,120776405841,230195565369,253358202409,171651947481
%N a(n)=sigma(A128607(n)), where A128607(n) is the sequence of perfect (or pure) powers such that a(n) is a perfect power.
%C Denote by egcd(n) the gcd of all the powers in the prime factorization of n. In our context, a square has egcd=2, a cube has egcd=3 and so on. The only elements n in the sequence for which egcd(n)>2 are 81 and 343. Are there any others? Conjecture I: egcd(A128607(n))=2 for all n>2. Let a(n)=sigma(A128607(n)). Note that A128607(11)=1857437604=(2^2)*(3^2)*(11^2)*(653^2) has a(11)=5168743489=(7^3)*(13^3)*(19^3). Any other cubes or higher egcd's in this sequence? Conjecture II: egcd(a(n))=2 for all n ne 11.
%H Robert Israel, <a href="/A128608/b128608.txt">Table of n, a(n) for n = 1..58</a>
%e a(2) = sigma(A128607(2)) = sigma(343) = 1+7+7^2+7^3 = 400 = 2^4*5^2.
%p N:= 10^13: # to get all terms where A128607(n) <= N
%p pows:= {1, seq(seq(n^k, n = 2 .. floor(N^(1/k))), k = 2 .. floor(log[2](N)))}:
%p filter:= proc(n) local s, F;
%p s:= numtheory:-sigma(n);
%p F:= map(t -> t[2], ifactors(s)[2]);
%p igcd(op(F)) >= 2
%p end proc:
%p filter(1):= true: A128608:= sort(convert((filter, pows), list)):
%p map(numtheory:-sigma,A128608); # _Robert Israel_, Feb 14 2016
%t M = 10^13; (* to get all terms where A128607(n) <= M *)
%t pows = {1, Table[Table[n^k, {n, 2, Floor[M^(1/k)]}], {k, 2, BitLength[M]-1}]} // Flatten // Union;
%t okQ[n_] := Module[{s, F}, s = DivisorSigma[1, n]; F = FactorInteger[s][[All, 2]]; GCD @@ F >= 2];
%t okQ[1] = True;
%t DivisorSigma[1, #]& /@ Select[pows, okQ] (* _Jean-François Alcover_, Feb 09 2023, after _Robert Israel_ *)
%Y Cf. A000203, A001597, A128607.
%K nonn
%O 1,2
%A _Walter Kehowski_, Mar 20 2007
%E 1, 13884144561, 35018011161, 120776405841, added by _Zak Seidov_, Feb 14 2016
%E Edited by _Robert Israel_, Feb 14 2016