Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 09 2024 19:31:36
%S 17,21,25,42,63,84,143,286,2355,5821,6618,11709,12482,33747,39571,
%T 129109,466957,1162248,1565166,1968084,3636638,3853951,4898376,
%U 6065280,13443745,13933175,17118698,22421197,24153462377
%N Inrepfigit (INverse REPetitive FIbonacci-like diGIT) numbers (or Htiek numbers).
%C This sequence is similar to A007629 (Keith numbers). It consists of the numbers n>9 with the following property: n is a term of the sequence S whose first k terms are the k digits of n (with the first term equal to the units digit) and with S(n+1)=sum of the k previous terms.
%e 42 is in the sequence because the terms of the sequence it creates are 2, 4, 6, 10, 16, 26, 42, ...
%t iKeithQ[n_Integer] := Module[{b = Reverse[IntegerDigits[n]], s, k = 0}, s = Total[b]; While[s < n, AppendTo[b, s]; k++; s = 2*s - b[[k]]]; s == n]; Select[Range[10, 100000], iKeithQ] (* _T. D. Noe_, Mar 15 2011 *)
%o (C++)
%o #include <stdio.h>
%o // Here is a (messy) C++ code which finds the terms of the sequence below 100000000
%o int main() {
%o int k2;
%o for (int k = 10; k < 100000000; k++) {
%o k2 = k;
%o int array[9];
%o for (int i = 0; i <= 8; i++) {
%o array[i] = k2 % 10;
%o k2 /= 10;
%o }
%o bool c = true;
%o int check = 8;
%o for (int i = 0; i <= 8; i++) {
%o if ((array[8 - i] == 0) && c)
%o check--;
%o else
%o c = false;
%o }
%o bool b = false;
%o int n = 0;
%o while (n <= k && !b) {
%o n = 0;
%o for (int i = 0; i <= check; i++)
%o n += array[i];
%o if (n == k)
%o b = true;
%o for (int i = 0; i < check; i++)
%o array[i] = array[i + 1];
%o array[check] = n;
%o }
%o if (b)
%o printf("%d", k);
%o }
%o return 0;
%o }
%Y Cf. A007629.
%Y Cf. A097060 (reverse of these numbers).
%K base,nonn
%O 1,1
%A Pierre Karpman (pierre.karpman(AT)laposte.net), Oct 23 2007