login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128486 Expansion of ((b(q)*c(q))^3 - 8*(b(q^2)*c(q^2))^3) / 27 in powers of q where b(), c() are cubic AGM theta functions. 0
1, -14, 9, 52, 6, -126, -40, 136, 81, -84, -564, 468, 638, 560, 54, -2480, 882, -1134, -556, 312, -360, 7896, -840, 1224, -3089, -8932, 729, -2080, 4638, -756, 4400, 10528, -5076, -12348, -240, 4212, -2410, 7784, 5742, 816, -6870, 5040, 9644, -29328, 486, 11760, -18672, -22320 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

LINKS

Table of n, a(n) for n=1..48.

FORMULA

Expansion of b(q) * b(q^2) * c(q) * c(q^2) * (b(q) * b(q^2) - c(q) * c(q^2)) / 9 in powers of q where b(), c() are cubic AGM theta functions.

Expansion of (eta(q) * eta(q^3))^6 - 8*(eta(q^2) * eta(q^6))^6 in powers of q.

Expansion of eta(q) * eta(q^2) * eta(q^3) * eta(q^6) * ((eta(q) * eta(q^2))^4 - 9*(eta(q^3) * eta(q^6))^4) in powers of q.

G.f.: x * Product_{k>0} (1 - x^k)^6 * (1 - x^(3*k))^6 - 8 * x^2 * Product_{k>0} (1 - x^(2*k))^6 * (1 - x^(6*k))^6.

G.f. is a period 1 Fourier series which satisfies f(-1 / (6*t)) = -216 (t/i)^6 f(t) where q = exp(2 Pi i t).

a(2*n) = A007332(2*n) - 8 * A007332(n). a(2*n + 1) = A007332(2*n + 1).

EXAMPLE

G.f. = q - 14*q^2 + 9*q^3 + 52*q^4 + 6*q^5 - 126*q^6 - 40*q^7 + 136*q^8 + ...

PROG

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^6 - 8*x * (eta(x^2 + A) * eta(x^6+A))^6, n))};

(PARI) {a(n) = my(A, A1, A2); if( n<1, 0, n--; A = x * O(x^n); A1 = eta(x + A) * eta(x^2 + A); A2 = eta(x^3 + A) * eta(x^6 + A); polcoeff( A1^5*A2 - 9*x * A1*A2^5, n))};

(MAGMA) A := Basis( CuspForms( Gamma1(6), 6), 49); A[1] - 14*A[2] + 9*A[3]; /* Michael Somos, Feb 19 2015 */

CROSSREFS

Cf. A007332.

Sequence in context: A206641 A266014 A086050 * A147370 A140739 A305946

Adjacent sequences:  A128483 A128484 A128485 * A128487 A128488 A128489

KEYWORD

sign,mult

AUTHOR

Michael Somos, Mar 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)