login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128469
Numbers of the form 30k+29 or possible lower bounds of twin primes pairs ending in 9.
1
29, 59, 89, 119, 149, 179, 209, 239, 269, 299, 329, 359, 389, 419, 449, 479, 509, 539, 569, 599, 629, 659, 689, 719, 749, 779, 809, 839, 869, 899, 929, 959, 989, 1019, 1049, 1079, 1109, 1139, 1169, 1199, 1229, 1259, 1289, 1319, 1349, 1379, 1409, 1439, 1469
OFFSET
1,1
COMMENTS
For a 30k+r "wheel", r = 11,17,29 are the only possible values that can form a a lower twin prime pair. The 30k+r wheel gives the recurrence 1, 7,11,13,17,19,23,29 31,37,41,43,47,49,53,59 .. which is frequently used in prime number sieves to skip multiples of 2,3,5. The fact that adding 2 to 30k+1,7,13,19,23 will gives us a multiple of 3 or 5, precludes these numbers from being a lower member of a twin prime pair. This leaves us with r = 11,17,29 as the only possible cases to form a lower bound of a twin prime pair. The lower bound of twin prime pairs can only end in 1,7 or 9 since adding 2 to primes ending in 3 become multiples of 5.
Of the first 10000 terms of this sequence, only 988 are lower primes of a twin prime pair. [Harvey P. Dale, May 05 2011]
EXAMPLE
59 = 30*1 + 29, the lower part of the twin prime pair 59,61.
MATHEMATICA
30Range[0, 60]+29 (* Harvey P. Dale, May 05 2011 *)
PROG
(PARI) g(n) = forstep(x=29, n, 30, print1(x", "))
CROSSREFS
Sequence in context: A042668 A042664 A042662 * A132236 A293425 A158477
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, May 05 2007
STATUS
approved