Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 03 2019 04:07:36
%S 1,1,1,1,1,1,4,7,10,16,25,40,67,109,175,283,457,739,1198,1939,3136,
%T 5074,8209,13282,21493,34777,56269,91045,147313,238357,385672,624031,
%U 1009702,1633732,2643433,4277164,6920599,11197765,18118363,29316127,47434489
%N A linear recurrence sequence: a(n) = a(n-1) + a(n-3) + a(n-5) + a(n-6).
%C The characteristic polynomial of this recurrence is x^6 - x^5 - x^3 - x - 1 = (x^2 - x - 1)*(x^6 - 1)/(x^2 - 1), so the sequence can be written as the sum of a Fibonacci sequence and a sequence of period 6; see the formula line. Hence the ratio a(n+1)/a(n) has the same limit as the Fibonacci sequence does, namely the golden ratio, (1+sqrt(5))/2, about 1.61803398874989484820.
%D Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002.
%H Jinyuan Wang, <a href="/A128429/b128429.txt">Table of n, a(n) for n = 0..1000</a>
%H Bruce Rawles, <a href="http://www.intent.com/sg/">Sacred Geometry </a>
%H Kelley L. Ross, <a href="http://www.friesian.com/golden.htm">The Golden Ratio and The Fibonacci Numbers</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Golden_ratio">Golden Ratio</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 1, 0, 1, 1).
%F a(n) = (1/4)*(3F(n-1) + b(n mod 6)), where F(n) = A000045(n) is the n-th Fibonacci number and b(0)=b(2)=b(3)=1, b(1)=4, b(4)=-2 and b(5)=-5.
%F G.f.: (-1 + x^3 + x^4 + 2*x^5)/((x^2 + x - 1)*(1 + x + x^2)*(x^2 - x + 1)). - _R. J. Mathar_, Nov 16 2007
%t LinearRecurrence[{1, 0, 1, 0, 1, 1}, {1, 1, 1, 1, 1, 1}, 41] (* _Jean-François Alcover_, Sep 25 2017 *)
%Y Cf. Fibonacci numbers A000045; Lucas numbers A000032.
%K nonn
%O 0,7
%A Luis A Restrepo (luisiii(AT)mac.com), Mar 05 2007
%E Edited by _Dean Hickerson_ and _Don Reble_, Mar 09 2007