login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=a(2)=1. a(n+1) = a(n) + a(largest prime dividing n).
2

%I #13 Jan 27 2019 20:56:55

%S 1,1,2,4,5,10,12,24,25,27,32,64,66,132,144,149,150,300,302,604,609,

%T 621,653,1306,1308,1313,1379,1381,1393,2786,2791,5582,5583,5615,5765,

%U 5777,5779,11558,11860,11926,11931,23862,23874,47748,47780,47785,48438,96876

%N a(1)=a(2)=1. a(n+1) = a(n) + a(largest prime dividing n).

%H Giovanni Resta, <a href="/A128215/b128215.txt">Table of n, a(n) for n = 1..10000</a>

%e The largest prime dividing 12 is 3. So a(13) = a(12) + a(3) = 64 + 2 = 66.

%p with(numtheory): a[1]:=1:a[2]:=1:for n from 2 to 55 do a[n+1]:=a[n]+a[factorset(n)[nops(factorset(n))]] od: seq(a[n],n=1..55); # _Emeric Deutsch_, Mar 07 2007

%t a128215[1] = 1; a128215[2] = 1;

%t a128215[n_] := a128215[n] = a128215[n-1] + a128215[First[Last[FactorInteger[n-1]]]];

%t Array[a128215, 48] (* data *) (* _Hartmut F. W. Hoft_, Mar 08 2017 *)

%Y Cf. A128216, A006530.

%K nonn

%O 1,3

%A _Leroy Quet_, Feb 19 2007

%E More terms from _Emeric Deutsch_, Mar 07 2007