login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n - 1)*a(n - 1) + 2^n for n >= 1, a(0) = 1.
4

%I #9 Nov 16 2022 05:06:01

%S 1,3,13,73,527,4775,52589,683785,10257031,174370039,3313031765,

%T 69573669113,1600194393695,40004859850567,1080131215981693,

%U 31323805263501865,971037963168623351,32044252784564701655,1121548847459764820069,41497307356011298866841,1618394986884440656855375

%N a(n) = (2*n - 1)*a(n - 1) + 2^n for n >= 1, a(0) = 1.

%C A weighted sum of quotients of double factorials.

%C a(n) are the row sum of triangle A126063.

%H P. Luschny, <a href="http://www.luschny.de/math/seq/variations.html">Variants of Variations</a>.

%F a(n) = (2n)!/(n! 2^n) Sum(k=0..n, 4^k k!/(2k)!)

%F a(n) = 2^n Gamma(n+1/2) Sum(k=0..n, 1/Gamma(k+1/2))

%F a(n) = Sum(k=0..n, 2^k n!!/k!!) [n!! defined as A001147(n), Gottfried Helms]

%F a(n) = Sum(k=0..n, 2^(2k-n)((n+1)! Catalan(n))/((k+1)! Catalan(k))) [Catalan(n) A000108]

%F a(n) = Sum(k=0..n, 2^(2k-n) QuadFact(n)/QuadFact(k)) [QuadFact(n) A001813]

%F a(n) = Sum(k=0..n, 2^(2k-n) (-1)^(n-k) A097388(n)/A097388(k) )

%F a(n) = A001147(n) Sum(k=0..n, 2^k / A001147(k))

%F a(n) = A128195(n)/A005408(n)

%F a(n) = A128195(n-1)+A000079(n) (if n>0)

%F Recursive form: a(n) = (2n-1)*a(n-1) + 2^n; a(0) = 1 [Gottfried Helms]

%F Note: The following constants will be used in the next formulas.

%F K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)

%F M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))

%F Generalized form: For x>0

%F a(x) = 2^x(exp(1)*Gamma(x+1/2,1) + K*Gamma(x+1/2))

%F Asymptotic formula:

%F a(n) ~ 2^n*(1+(exp(1)+K)*(n-1/2)!)

%F a(n) ~ M(2exp(-1)(n-1/(24*n+19/10*1/n)))^n

%p a := n -> `if`(n=0,1,(2*n-1)*a(n-1)+2^n);

%t a[n_] := Sum[2^k*((2*n-1)!!/(2*k-1)!!), {k, 0, n}]; Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jun 28 2013 *)

%Y Cf. A128195, A001147, A126063.

%K easy,nonn

%O 0,2

%A _Peter Luschny_, Feb 26 2007