login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central coefficients of q in the q-analog of the odd double factorials: a(n) = [q^(n(n-1)/2)] Product_{j=1..n} (1-q^(2j-1))/(1-q).
6

%I #22 Feb 07 2023 09:58:19

%S 1,1,1,3,15,97,815,8447,104099,1487477,24188525,441170745,8920418105,

%T 198066401671,4791181863221,125421804399845,3532750812110925,

%U 106538929613501939,3425126166609830467,116938867144129019137,4225543021235970185429,161113285522023566327031

%N Central coefficients of q in the q-analog of the odd double factorials: a(n) = [q^(n(n-1)/2)] Product_{j=1..n} (1-q^(2j-1))/(1-q).

%H Alois P. Heinz, <a href="/A128081/b128081.txt">Table of n, a(n) for n = 0..150</a>

%F a(n) ~ 3 * 2^n * n^(n - 3/2) / (sqrt(Pi) * exp(n)). - _Vaclav Kotesovec_, Feb 07 2023

%e a(n) is the central term of the q-analog of odd double factorials, in which the coefficients of q (triangle A128080) begin:

%e n=0: (1);

%e n=1: (1);

%e n=2: 1,(1),1;

%e n=3: 1,2,3,(3),3,2,1;

%e n=4: 1,3,6,9,12,14,(15),14,12,9,6,3,1;

%e n=5: 1,4,10,19,31,45,60,74,86,94,(97),94,86,74,60,45,31,19,10,4,1;

%e n=6: 1,5,15,34,65,110,170,244,330,424,521,614,696,760,801,(815),...;

%e The terms enclosed in parenthesis are initial terms of this sequence.

%p b:= proc(n) option remember; `if`(n=0, 1,

%p simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))

%p end:

%p a:= n-> coeff(b(n), q, n*(n-1)/2):

%p seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 22 2021

%t a[n_Integer] := a[n] = Coefficient[Expand@Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q, n (n - 1)/2];

%t Table[a[n], {n, 0, 21}] (* _Vladimir Reshetnikov_, Sep 22 2021 *)

%o (PARI) a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k-1))/(1-q)),n*(n-1)/2,q))

%Y Cf. A001147 ((2n-1)!!); A128080 (triangle), A128082 (diagonal).

%K nonn

%O 0,4

%A _Paul D. Hanna_, Feb 14 2007