login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*n - numerator((2*n-1)^2/(2*(2*n)!)).
4

%I #16 Jan 18 2014 16:32:31

%S -1,1,1,1,1,9,1,1,15,1,1,21,1,25,27,1,1,33,35,1,39,1,1,45,1,49,51,1,

%T 55,57,1,1,63,65,1,69,1,1,75,77,1,81,1,85,87,1,91,93,95,1,99,1,1,105,

%U 1,1,111,1,115,117,119,121,123

%N a(n) = 2*n - numerator((2*n-1)^2/(2*(2*n)!)).

%C Odd composite numbers with placeholders for primes between them.

%F a(n) = 2*n - A128059(n)

%F a(n) = (A217983(n-1) * (2*n-1))/A160479(n) for n >= 3. [_Johannes W. Meijer_, Oct 25 2012]

%F a(0) = -1, a(n) = GCD(2n-1, (2n-2)!), n > 0. - _Wesley Ivan Hurt_, Jan 05 2014

%p A128060 := proc(n): 2*n - numer((2*n-1)^2/(2*(2*n)!)) end: seq(A128060(n), n=0..62);

%p # End program 1 [_Johannes W. Meijer_, Oct 25 2012]

%p A128060 := proc(n) local n1: n1:=2*n-1: if type(n1, prime) then A128060(n) := 1 else A128060(n) := n1 fi: end: seq(A128060(n), n=0..62);

%p # End program 2 [_Johannes W. Meijer_, Oct 25 2012]

%t Table[2n - Numerator[(2n - 1)^2/(2(2n)!)], {n, 0, 74}] (* _Alonso del Arte_, Jan 05 2014 *)

%K easy,sign

%O 0,6

%A _Paul Barry_, Feb 13 2007