login
A128046
Triangle read by rows: inverse of the lower triangular matrix (1/1; 1/1, 1/3; 1/1, 1/3, 1/5; ...).
1
1, -3, 3, 0, -5, 5, 0, 0, -7, 7, 0, 0, 0, -9, 9, 0, 0, 0, 0, -11, 11, 0, 0, 0, 0, 0, -13, 13, 0, 0, 0, 0, 0, 0, -15, 15, 0, 0, 0, 0, 0, 0, 0, -17, 17, 0, 0, 0, 0, 0, 0, 0, 0, -19, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 23
OFFSET
1,2
COMMENTS
A version of an odd number transform.
FORMULA
Triangle read by rows, replace the right border (1, 2, 3, ...) of A126615 with (1, 3, 5, ...) and the adjacent diagonal (-2, -3, -4, ...) with (-3, -5, -7, ...).
EXAMPLE
First few rows of the triangle:
1;
-3, 3;
0, -5, 5;
0, 0, -7, 7;
...
PROG
(PARI) tabl(nn) = 1/matrix(nn, nn, i, j, if(i>=j, 1/(2*j-1), 0));
lista(nn) = my(m=tabl(nn)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", "))); \\ Michel Marcus, Feb 08 2023
CROSSREFS
Cf. A126615.
Sequence in context: A377143 A256119 A217552 * A102899 A353327 A072689
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Feb 11 2007
EXTENSIONS
Edited by N. J. A. Sloane, Feb 26 2007
More terms from Michel Marcus, Feb 08 2023
STATUS
approved