login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2*n^3 - 2*n + 9 divided by 3*largest prime factor.
3

%I #11 Mar 13 2020 13:08:04

%S 1,1,1,1,1,11,1,3,21,39,1,31,1,1,1,7,297,9,351,1,1,19,91,1,101,141,51,

%T 33,37,49,1,299,37,1,3,39,21,1,11,1,19,1,31,1071,351,9,43,1,481,11,

%U 511,83,3,3,69,1,1,91,1,19,187,39,219,417,553,37,1,1,1,1369,117,693,423,31

%N 2*n^3 - 2*n + 9 divided by 3*largest prime factor.

%H Amiram Eldar, <a href="/A127991/b127991.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A127989(n)/(3*A006530(A127989(n))). - _Amiram Eldar_, Mar 13 2020

%t a = {}; Do[AppendTo[a, 2n^3 - 2n + 9], {n, 1, 300}]; b = {}; Do[c = FactorInteger[a[[n]]]; d = c[[Length[c]]]; AppendTo[b, a[[n]]/(3 d[[1]])], {n, 1, Length[a]}]; b

%o (PARI) gpf(n)=my(f=factor(n)[,1]); if(n==1,1,f[#f]);

%o a(n)=my(m=2*n^3-2*n+9); m/gpf(m)/3 \\ _Charles R Greathouse IV_, Mar 13 2020

%Y Cf. A127979, A127990, A127992.

%K nonn,easy

%O 1,6

%A _Artur Jasinski_, Feb 10 2007