|
|
A127934
|
|
a(8n)=8n+1, a(8n+1)=a(8n+2)=a(8n+3)=8n+5, a(8n+4)=8n+6, a(8n+5)=a(8n+6)=a(8n+7)=8n+8.
|
|
2
|
|
|
1, 5, 5, 5, 6, 8, 8, 8, 9, 13, 13, 13, 14, 16, 16, 16, 17, 21, 21, 21, 22, 24, 24, 24, 25, 29, 29, 29, 30, 32, 32, 32, 33, 37, 37, 37, 38, 40, 40, 40, 41, 45, 45, 45, 46, 48, 48, 48, 49, 53, 53, 53, 54, 56, 56, 56, 57, 61, 61, 61, 62, 64, 64, 64, 65, 69, 69, 69, 70, 72, 72, 72
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
|
|
FORMULA
|
a(n) = (1/56)*Sum{k=0..n} ((-5*(k mod 8) + 2*((k+1) mod 8) + 16*((k+2) mod 8) - 5*((k+3) mod 8) - 5*((k+4) mod 8) + 2*((k+5) mod 8) + 30*((k+6) mod 8) - 19*((k+7) mod 8)). - Paolo P. Lava, Nov 18 2008
G.f.: (1 +4*x +x^4 +2*x^5)/(1 -x -x^8 +x^9). - G. C. Greubel, Apr 30 2018
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 5, 5, 5, 6, 8, 8, 8, 9}, 80] (* Harvey P. Dale, Oct 04 2014 *)
CoefficientList[Series[(1+4*x+x^4+2*x^5)/(1-x-x^8+x^9), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2018 *)
|
|
PROG
|
(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +4*x +x^4 +2*x^5)/(1-x-x^8+x^9))); // G. C. Greubel, Apr 30 2018
(PARI) x='x + O('x^50); Vec((1 +4*x +x^4 +2*x^5)/(1-x-x^8+x^9)) \\ G. C. Greubel, Apr 30 2018
|
|
CROSSREFS
|
Sequence in context: A046263 A092279 A159002 * A205236 A266948 A176172
Adjacent sequences: A127931 A127932 A127933 * A127935 A127936 A127937
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Philippe Deléham, Apr 06 2007
|
|
STATUS
|
approved
|
|
|
|