login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1/3 of product of three numbers: the n-th prime, the previous number and the following number.
9

%I #21 Oct 15 2023 19:09:42

%S 2,8,40,112,440,728,1632,2280,4048,8120,9920,16872,22960,26488,34592,

%T 49608,68440,75640,100232,119280,129648,164320,190568,234960,304192,

%U 343400,364208,408312,431640,480928,682752,749320,857072,895160,1102600

%N 1/3 of product of three numbers: the n-th prime, the previous number and the following number.

%C Number of irreducible monic cubic polynomials over GF(prime(n)). - _Robert Israel_, Jan 06 2015

%H G. C. Greubel, <a href="/A127919/b127919.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (prime(n)^3 - prime(n))/3. - _Wesley Ivan Hurt_, Oct 15 2023

%p seq((ithprime(n)^3 - ithprime(n))/3, n=1..100); # _Robert Israel_, Jan 06 2015

%t Table[(Prime[n] + 1) Prime[n] (Prime[n] - 1)/3, {n, 100}]

%o (PARI) forprime(p=2,1e3,print1(2*binomial(p+1,3)", ")) \\ _Charles R Greathouse IV_, Jun 16 2011

%o (Magma) [(p^3 - p) div 3: p in PrimesUpTo(150)]; // _Vincenzo Librandi_, Jan 08 2015

%Y Cf. A036689, A034953, A127917, A127918, A127920.

%K nonn,easy

%O 1,1

%A _Artur Jasinski_, Feb 06 2007