login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 60*(x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1).
6

%I #12 May 01 2018 21:31:03

%S 163,977611,12294697,37985853397,49252877161,137434331779,

%T 830329719061,1626105882361,8060524420261,11467771684597,

%U 13008402510163,15315610041211,43633838254429,71635442712061,125119099806661

%N Primes of the form 60*(x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1).

%C Generating polynomial is Schur's polynomial of 5-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

%H G. C. Greubel, <a href="/A127882/b127882.txt">Table of n, a(n) for n = 1..5000</a>

%p select(isprime,[seq(60*(x^5/120+x^4/24+x^3/6+x^2/2+x+1),x=1..2000)]); # _Muniru A Asiru_, Apr 30 2018

%t a = {}; Do[If[PrimeQ[60 + 60*x + 30*x^2 + 10*x^3 + (5*x^4)/2 + x^5/2], AppendTo[a, 60 + 60*x + 30*x^2 + 10*x^3 + (5*x^4)/2 + x^5/2]], {x, 1, 1000}]; a

%o (GAP) Filtered(List([1..2000],x->60*(x^5/120+x^4/24+x^3/6+x^2/2+x+1)),IsPrime); # _Muniru A Asiru_, Apr 30 2018

%Y Cf. A127873, A127874, A127875, A127876, A127877, A127878, A127879, A127880, A127881, A127883.

%K nonn

%O 1,1

%A _Artur Jasinski_, Feb 04 2007