login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of square tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
7

%I #31 Dec 10 2022 08:00:27

%S 3,30,171,1044,5691,30678,159891,821100,4151511,20764590,102880755,

%T 505866804,2471159019,12004723878,58037429739,279405305676,

%U 1340130574407,6406579480446,30536794325547,145166910196116,688444702671291,3257788855054518,15385512460164963

%N Number of square tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

%H Robert Israel, <a href="/A127868/b127868.txt">Table of n, a(n) for n = 1..1510</a>

%H P. Z. Chinn, R. Grimaldi and S. Heubach, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Heubach/heubach40.html">Tiling with Ls and Squares</a>, J. Int. Sequences 10 (2007) #07.2.8.

%H S. Heubach, <a href="https://www.calstatela.edu/sites/default/files/users/u1231/Presentations/talklv.pdf">Tiling with Ls and Squares</a>, 2005.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (6,5,-44,-39,2,-29,4,-4).

%F G.f.: 3x(1-x)^2(1+6x+3x^2)/(1-3x-7x^2+x^3-2x^4)^2.

%e a(2) = 30 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 6 + 8*3 = 30 square tiles in all of the 3x2 tilings.

%p f:= gfun:-rectoproc({a(n) - 6*a(n-1)-5*a(n-2)+44*a(n-3)+39*a(n-4)-2*a(n-5)+29*a(n-6)-4*a(n-7)+4*a(n-8), a(0) = 0, a(1) = 3, a(2) = 30, a(3) = 171, a(4) = 1044, a(5) = 5691, a(6) = 30678, a(7) = 159891},a(n), remember):

%p seq(f(n), n=1..40); # _Robert Israel_, Dec 22 2015

%t Table[Coefficient[Normal[Series[3x(1-x)^2(1+6x+3x^2)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]

%t LinearRecurrence[{6, 5, -44, -39, 2, -29, 4, -4}, {3, 30, 171, 1044, 5691, 30678, 159891, 821100}, 25] (* _Vincenzo Librandi_, Dec 23 2015 *)

%o (PARI) my(x='x+O('x^100)); Vec(3*x*(1-x)^2*(1+6*x+3*x^2)/(1-3*x-7*x^2+x^3-2*x^4)^2) \\ _Altug Alkan_, Dec 22 2015

%o (Magma) I:=[3,30,171,1044,5691,30678,159891,821100]; [n le 8 select I[n] else 6*Self(n-1)+5*Self(n-2)-44*Self(n-3)-39*Self(n-4)+2*Self(n-5)-29*Self(n-6)+4*Self(n-7)-4*Self(n-8): n in [1..30]]; // _Vincenzo Librandi_, Dec 23 2015

%Y Cf. A127864, A127865, A127866, A127867, A127869, A127870.

%K nonn

%O 1,1

%A Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007