login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127863
Coefficients of modular form for elliptic curve "243b1": y^2 + y = x^3 + 2 divided by q in powers of q^3.
1
1, -2, 5, 0, 2, 4, 8, 0, -5, -10, -7, 0, -1, 0, -13, 0, 18, -4, 0, 0, -1, -8, 5, 0, -7, -16, -4, 0, 0, 0, 10, 0, 14, 10, -13, 0, 17, 20, 0, 0, -11, 14, -19, 0, 40, 0, -7, 0, 0, 2, -19, 0, 11, 0, 17, 0, -9, 26, -25, 0, -19, 0, 0, 0, 23, -36, -28, 0, 0, 8, -16, 0, -35, 0, 5, 0, 29, 0, 0, 0, -31, 2, 16, 0, 0, 16, -5, 0, 0, -10
OFFSET
0,2
FORMULA
a(n) = b(3*n + 1) where b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 2 (mod 3), b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p == 1 (mod 3) where b(p) = -Sum_{x=0..p-1} Kronecker(4*x^3 + 9, p).
a(4*n + 3) = 0.
EXAMPLE
G.f. = 1 - 2*x + 5*x^2 + 2*x^4 + 4*x^5 + 8*x^6 - 5*x^8 - 10*x^9 - 7*x^10 + ...
G.f. = q - 2*q^4 + 5*q^7 + 2*q^13 + 4*q^16 + 8*q^19 - 5*q^25 - 10*q^28 - ...
PROG
(PARI) {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 1, 0, 2], 1), 3*n + 1))};
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, a0 = 1; a1 = y = -sum( x=0, p-1, kronecker( 4*x^3 + 9, p)); for( i=2, e, x = y*a1 - p*a0; a0 = a1; a1 = x); a1))) };
(Magma) qExpansion( ModularForm( EllipticCurve( [0, 0, 1, 0, 2])), 270); /* Michael Somos, Sep 07 2018 */
(SageMath)
def a(n):
return EllipticCurve("243b1").an(3*n+1) # Robin Visser, Jan 03 2024
CROSSREFS
Sequence in context: A379697 A296047 A307237 * A006891 A054675 A346191
KEYWORD
sign
AUTHOR
Michael Somos, Feb 03 2007
STATUS
approved