login
a(n) = denominator of b(n), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).
4

%I #11 Jan 28 2022 16:23:54

%S 1,2,6,30,330,257070,128005692870,23279147893155496537470,

%T 388475314992168993748220639081347493631827670,

%U 102339769648127358726761918460732576814168548432921287355299929744910591862606847215978930

%N a(n) = denominator of b(n), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).

%F For n >= 2, a(n) = a(n-1)*A127814(n-1).

%e A127814/A127815 = 2, 3/2, 5/6, -11/30, 779/330, 497941/257070, 181860254581/128005692870, ...

%t f[l_List] := Append[l, l[[ -1]] - 1/l[[ -1]]];Denominator[Nest[f, {2}, 10]] (* _Ray Chandler_, Feb 07 2007 *)

%Y Cf. A127814.

%K easy,frac,nonn

%O 1,2

%A _Leroy Quet_, Jan 30 2007

%E Extended by _Ray Chandler_, Feb 07 2007