login
A127698
Sum of n-th triangular number and its reversal.
1
0, 2, 6, 12, 11, 66, 33, 110, 99, 99, 110, 132, 165, 110, 606, 141, 767, 504, 342, 281, 222, 363, 605, 948, 303, 848, 504, 1251, 1010, 969, 1029, 1190, 1353, 726, 1190, 666, 1332, 1010, 888, 867, 848, 1029, 1212, 1595, 1089, 6336, 2882, 9339, 7887, 6446
OFFSET
0,2
COMMENTS
Gupta states in Prime Curios: "The smallest odd prime which can be represented as sum of a triangular number and its reverse, i.e., 10 + 01 = 11."
LINKS
G. L. Honaker, Jr. and Chris Caldwell, eds., 11.
FORMULA
a(n) = A000217(n) + A004086(A000217(n)).
EXAMPLE
a(0) = 0 + 0 = 0.
a(1) = 1 + 1 = 2 is the even prime.
a(4) = 10 + 1 = 11 is an odd prime.
a(5) = 15 + 51 = 66 = A000217(10).
a(19) = 190 + 91 = 281 is an odd prime.
a(24) = 300 + 3 = 303.
a(35) = 630 + 36 = 666 = A000217(36).
MAPLE
a:= n-> (p-> parse(cat(p, "+", seq(p[-i],
i=1..length(p)))))(""||(n*(n+1)/2)):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 19 2016
MATHEMATICA
rev[n_] := FromDigits@ Reverse@ IntegerDigits@ n; t[n_] := n (n + 1)/2; Table[t@ n + rev@ t@ n, {n, 0, 49}] (* Giovanni Resta, Jun 19 2016 *)
#+IntegerReverse[#]&/@Accumulate[Range[0, 50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 20 2016 *)
CROSSREFS
Sequence in context: A009230 A354421 A069491 * A379620 A379518 A130503
KEYWORD
base,easy,look,nonn
AUTHOR
Jonathan Vos Post, Apr 03 2007
EXTENSIONS
Edited by Giovanni Resta, Jun 19 2016
STATUS
approved