login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1. a(n+1) = sum{k=0 to n} a(n-k)*a(ceiling(k/2)).
2

%I #14 Nov 16 2021 03:42:16

%S 1,1,2,4,9,19,42,90,198,428,936,2030,4430,9626,20978,45622,99367,

%T 216197,470736,1024420,2230183,4853881,10566170,22997974,50061240,

%U 108964596,237186018,516272178,1123772192,2446081048,5324371354,11589437278

%N a(0) = 1. a(n+1) = sum{k=0 to n} a(n-k)*a(ceiling(k/2)).

%H Robert Israel, <a href="/A127681/b127681.txt">Table of n, a(n) for n = 0..2958</a>

%F a(n) ~ c * d^n, where d = 2.17668434612191638687360948440303534082431658053308188275404767951385648... and c = 0.39120452795484998747876543545867360129596245925827624710922741574667... - _Vaclav Kotesovec_, Nov 16 2021

%p f:= proc(n) option remember;

%p add(procname(n-1-k)*procname(ceil(k/2)),k=0..n-1)

%p end proc:

%p f(0):= 1:

%p map(f, [$0..40]); # _Robert Israel_, Feb 16 2018

%t f[l_List] := Block[{n = Length[l] - 1},Append[l, Sum[l[[n - k + 1]]*l[[Ceiling[k/2] + 1]], {k, 0, n}]]];Nest[f, {1}, 32] (* _Ray Chandler_, Feb 13 2007 *)

%Y Cf. A127680.

%K easy,nonn

%O 0,3

%A _Leroy Quet_, Jan 23 2007

%E Extended by _Ray Chandler_, Feb 13 2007