login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers k that divide A123591(k) = ((2^k - 1)^(2^k) - 1)/(2^k)^2.
2

%I #8 Aug 16 2021 22:05:11

%S 15,51,65,85,185,221,255,341,451,533,561,595,645,679,771,1059,1095,

%T 1105,1271,1285,1313,1387,1455,1581,1729,1905,2045,2047,2091,2307,

%U 2465,2701,2755,2821,2895,3201,3205,3277,3281,3341,3603,3655,3723,3855,4033,4039

%N Composite numbers k that divide A123591(k) = ((2^k - 1)^(2^k) - 1)/(2^k)^2.

%C p divides A123591(p) for prime p > 2.

%C Odd composite numbers k such that (2^k-1)^(2^k) == 1 (mod k). - _Robert Israel_, Jul 06 2017

%H Robert Israel, <a href="/A127643/b127643.txt">Table of n, a(n) for n = 1..571</a>

%p select(n -> not isprime(n) and (2^n-1) &^ (2^n) mod n = 1, [seq(i,i=9..10000,2)]); # _Robert Israel_, Jul 06 2017

%t Do[f=PowerMod[(2^n-1),(2^n),n]-1;If[ !PrimeQ[n]&&IntegerQ[(n+1)/2]&&IntegerQ[f/n],Print[n]],{n,2,10000}]

%Y Cf. A123591, A085606.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, Jan 22 2007