login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential error term from Stirling's Approximation.
0

%I #10 Jan 24 2024 09:57:41

%S 1,1,18,345,10243,437769,25260317,1873346813,172254143084,

%T 19114537903943,2506628271002200,382005168783773474,

%U 66734799966312471195,13212509243902296154744,2936153006332857671962341,726345521215072990990045577,198595552305314906351047196508

%N Exponential error term from Stirling's Approximation.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingsSeries.html">Stirling's Series</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingsApproximation.html">Stirling's Approximation</a>.

%F a(n) = floor(sqrt(2*Pi)*(n^n)*(n^(n/2))) - n!.

%e a(1) = Floor[(sqrt(2*pi) * (1^1) * (1^(1/2))) - 1! ] = Floor(1.50662827) = 1.

%e a(2) = Floor[(sqrt(2*pi) * (2^2) * (2^(2/2))) - 2! ] = Floor(18.0530262) = 18.

%Y Cf. A005394, A046968, A046969, A055775, A127426.

%K easy,nonn

%O 0,3

%A _Jonathan Vos Post_, Apr 02 2007

%E More terms from _Alois P. Heinz_, Jan 24 2024