Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 May 31 2024 05:47:34
%S 4,17,30,43,56,69,82,95,108,121,134,147,160,173,186,199,212,225,238,
%T 251,264,277,290,303,316,329,342,355,368,381,394,407,420,433,446,459,
%U 472,485,498,511,524,537,550,563,576,589,602,615,628,641,654,667,680,693,706,719
%N a(n) = 13*n + 4.
%C Superhighway created by 'LQTL Ant' L90R90L45R45 from iteration 4 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the size of the turn (in degrees) at each iteration.
%C Ant Farm algorithm available from _Robert H Barbour_.
%D P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.
%H G. C. Greubel, <a href="/A127547/b127547.txt">Table of n, a(n) for n = 0..5000</a>
%H C. Langton, <a href="http://dx.doi.org/10.1016/0167-2789(86)90237-X">Studying Artificial Life with Cellular Automata</a>, Physica D: Nonlinear Phenomena, vol. 22, pp. 120-149, 1986.
%H James Propp, <a href="http://dx.doi.org/10.1007/BF03026614">Further Ant-ics</a>, Mathematical Intelligencer, 16 pp. 37-42, 1994.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F From _Elmo R. Oliveira_, Mar 21 2024: (Start)
%F G.f.: (4+9*x)/(1-x)^2.
%F E.g.f.: (4 + 13*x)*exp(x).
%F a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
%t Range[4,1000,13] (* _Vladimir Joseph Stephan Orlovsky_, May 31 2011 *)
%o (Magma) [13*n+4: n in [0..60]]; // _G. C. Greubel_, May 31 2024
%o (SageMath) [13*n+4 for n in range(61)] # _G. C. Greubel_, May 31 2024
%Y A subsequence of A092464.
%Y Cf. A126979, A126980.
%Y Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), this sequence (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).
%K easy,nonn
%O 0,1
%A _Robert H Barbour_, Apr 01 2007
%E Edited by _N. J. A. Sloane_, May 10 2007