login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k)= mobius(n)*binomial(n-1,k-1).
4

%I #31 Aug 15 2022 05:12:45

%S 1,-1,-1,-1,-2,-1,0,0,0,0,-1,-4,-6,-4,-1,1,5,10,10,5,1,-1,-6,-15,-20,

%T -15,-6,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,9,36,84,126,126,84,36,

%U 9,1,-1,-10,-45,-120,-210,-252,-210,-120,-45,-10,-1,0,0,0,0,0,0,0,0,0,0,0,0

%N Triangle read by rows: T(n,k)= mobius(n)*binomial(n-1,k-1).

%C Could also be defined as the matrix product of A128407 and A007318.

%C A013929 gives the indices of rows that are all zeros. - _Michel Marcus_, Feb 15 2022

%F T(n,k) = mu(n)*binomial(n-1,k-1) = A008683(n)*A007318(n-1,k-1). - _R. J. Mathar_, Aug 15 2022

%e First few rows of the triangle:

%e 1;

%e -1, -1;

%e -1, -2, -1;

%e 0, 0, 0, 0;

%e -1, -4, -6, -4, -1;

%e 1, 5, 10, 10, 5, 1;

%e ...

%p A127512 := proc(n,k)

%p numtheory[mobius](n)*binomial(n-1,k-1) ;

%p end proc:

%p seq(seq( A127512(n,k),k=1..n),n=1..10) ; # _R. J. Mathar_, Aug 15 2022

%o (PARI) row(n) = my(M = matrix(n, n, i, j, if (i==j, moebius(i))), P = matrix(n, n, i, j, binomial(i-1, j-1))); vector(n, k, (M*P)[n, k]); \\ _Michel Marcus_, Feb 15 2022

%Y Cf. A007318, A008683, A013929, A127511 (row sums).

%Y Cf. A127514 (P*M).

%K tabl,sign,easy

%O 1,5

%A _Gary W. Adamson_, Jan 17 2007

%E Edited by _N. J. A. Sloane_, Sep 25 2008

%E NAME simplified by _R. J. Mathar_, Aug 15 2022