login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127482
Product of the nonzero digital products of all the prime numbers prime(1) to prime(n).
1
2, 6, 30, 210, 210, 630, 4410, 39690, 238140, 4286520, 12859560, 270050760, 1080203040, 12962436480, 362948221440, 5444223321600, 244990049472000, 1469940296832000, 61737492466944000, 432162447268608000, 9075411392640768000, 571750917736368384000
OFFSET
1,1
LINKS
FORMULA
a(n) = Product_{k=1..n} dp_p(prime(k)) where prime(k)=A000040(k) and dp_p(m)=product of the nonzero digits of m in base p (p=10 for this sequence). - Hieronymus Fischer, Sep 29 2007
From Michel Marcus, Mar 11 2022: (Start)
a(n) = Product_{k=1..n} A051801(prime(k)).
a(n) = Product_{k=1..n} A101987(k). (End)
EXAMPLE
a(7) = dp_10(2)*dp_10(3)*dp_10(5)*dp_10(7)*dp_10(11)*dp_10(13)*dp_10(17) = 2*3*5*7*(1*1)*(1*3)*(1*7) = 4410.
MAPLE
a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*mul(
`if`(i=0, 1, i), i=convert(ithprime(n), base, 10)))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Mar 11 2022
MATHEMATICA
Rest[FoldList[Times, 1, Times@@Cases[IntegerDigits[#], Except[0]]&/@ Prime[ Range[ 20]]]] (* Harvey P. Dale, Mar 19 2013 *)
PROG
(PARI) f(n) = vecprod(select(x->(x>1), digits(prime(n)))); \\ A101987
a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 11 2022
(Python)
from math import prod
from sympy import sieve
def pod(s): return prod(int(d) for d in s if d != '0')
def a(n): return pod("".join(str(sieve[i+1]) for i in range(n)))
print([a(n) for n in range(1, 23)]) # Michael S. Branicky, Mar 11 2022
KEYWORD
base,easy,nonn
AUTHOR
Alain Van Kerckhoven (alain(AT)avk.org), Sep 12 2007
EXTENSIONS
Corrected and extended by Hieronymus Fischer, Sep 29 2007
STATUS
approved