Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 06 2022 09:40:04
%S 2,-4,10,-20,36,-64,110,-180,288,-452,692,-1044,1554,-2276,3296,-4724,
%T 6696,-9408,13108,-18112,24850,-33864,45844,-61696,82564,-109892,
%U 145536,-191828,251684,-328804,427802,-554408,715808,-920896,1180660,-1508736,1921896,-2440740,3090612
%N Expansion of the elliptic function sqrt(k(q))/q^(1/4) in powers of q, where sqrt(k(q)) = theta_2(q)/theta_3(q).
%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
%F Expansion of 2 * q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q. - _Michael Somos_, Jun 12 2012
%F a(n) ~ (-1)^n * exp(Pi*sqrt(n))/(2^(5/2)*n^(3/4)). - _Vaclav Kotesovec_, Jul 04 2016
%F 2 * ({1} U (Euler transform of period 4 sequence [-2, 4, -2, 0])). - _Georg Fischer_, Dec 06 2022
%e 2 - 4*x + 10*x^2 - 20*x^3 + 36*x^4 - 64*x^5 + 110*x^6 - 180*x^7 + 288*x^8 - ...
%e 2*q^(1/4) - 4*q^(5/4) + 10*q^(9/4) - 20*q^(13/4) + 36*q^(17/4) - 64*q^(21/4) + ...
%t QP = QPochhammer; s = 2*(QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 27 2015, adapted from PARI *)
%t nmax = 50; CoefficientList[Series[2*Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 04 2016 *)
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 * (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))} /* _Michael Somos_, Jun 12 2012 */
%Y See A127391 for another version. Dividing by 2 gives A079006. Cf. A001936, A001938.
%K sign
%O 0,1
%A _N. J. A. Sloane_, Mar 31 2007