login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (sqrt(1-4x)-x)/(1-4x).
6

%I #18 Jan 16 2023 11:15:29

%S 1,1,2,4,6,-4,-100,-664,-3514,-16916,-77388,-343144,-1490148,-6376616,

%T -26992264,-113317936,-472661434,-1961361076,-8104733884,-33374212936,

%U -137031378124,-561253753336,-2293947547384,-9358755316816,-38121140494564,-155064370272904

%N Expansion of (sqrt(1-4x)-x)/(1-4x).

%C Hankel transform is A127276.

%C The second self-composition of the g.f. G(x) of A120009 is G(G(x)) = (sqrt(1-4x)-x)/(1-4x) - 1.

%H Robert Israel, <a href="/A127275/b127275.txt">Table of n, a(n) for n = 0..1653</a>

%F a(n) = C(2n,n) - 4^(n-1) + 0^n/4. - _Paul Barry_, Jan 10 2007

%F Conjecture: n*a(n) + 2*(-4*n+3)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - _R. J. Mathar_, Nov 26 2012

%F Conjecture verified using the differential equation (4*x-1)^2 * g'(x) + (8*x-2)*g(x) + 1 - 2*x = 0 satisfied by the g.f. - _Robert Israel_, Jan 15 2023

%e A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 - 4*x^5 - 100*x^6 - 664*x^7 + ...

%p S:= series((sqrt(1-4*x)-x)/(1-4*x),x,31):

%p seq(coeff(S,x,i),i=0..30); # _Robert Israel_, Jan 15 2023

%o (PARI) {a(n)=local(k=2,x=X+X^3*O(X^n));polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2,n,X)}

%Y Cf. A120009, A120012 (3rd self-composition); A000108 (Catalan).

%K easy,sign

%O 0,3

%A _Paul D. Hanna_, Jun 07 2006

%E Definition revised by _Paul Barry_, Jan 10 2007

%E Edited by _N. J. A. Sloane_, Jul 03 2008 at the suggestion of _R. J. Mathar_ and _Max Alekseyev_