login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequence arising from the factorization of F(n)=A002605 and L(n)=A080040 F(0)=0, F(1)=1, F(n)=2*F(n-1)+2*F(n-2), L(0)=2, L(1)=2, L(n)=2*L(n-1)+2*L(n-2).
1

%I #4 Mar 31 2012 14:39:58

%S 2,1,10,8,76,6,568,56,424,44,31648,52,236224,328,2320,3104,13160704,

%T 408,98232832,2896,129088,18272,5472827392,3088,537496576,136384,

%U 71911936,161344,2275853910016,3856,16987204845568

%N Sequence arising from the factorization of F(n)=A002605 and L(n)=A080040 F(0)=0, F(1)=1, F(n)=2*F(n-1)+2*F(n-2), L(0)=2, L(1)=2, L(n)=2*L(n-1)+2*L(n-2).

%F (sqrt(3)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,2+sqrt(3)) L(n)=2*F(n-1)+F(n+1) F(2n)=Product(d|2n) a(d), F(2n+1)=Product(d|2n+1) a(2d). L(2n+1)=Product(d|2n+1, a(d)), for k>0: L(2^k*(2n+1))=Product(d|2n+1, a(2^(k+1)*d)). for odd prime p, a(p)=L(p)/2, a(2p)=f(p) a(1)=2, a(2)=1; a(2^(k+1))=L(2^k);

%e F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*10*8*6*52=49920

%e F(9)=a(2)*a(6)*a(18)= 1*6*408=2448

%e L(12)=a(8)*a(24)=56*3088=172928

%e L(21)=a(1)*a(3)*a(7)*a(21)=2*10*568*129088=1466439680

%p with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(3)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,2+sqrt(3)),30)) od: seq(a[n],n=1..60);

%Y Cf. A002605, A080040.

%K nonn

%O 1,1

%A _Miklos Kristof_, Mar 26 2007