login
Numbers n of the form 3*k such that partition number of n is also of the form 3*k.
0

%I #7 Feb 03 2019 12:26:35

%S 3,9,21,24,30,33,39,48,51,57,63,75,102,111,129,138,147,162,180,189,

%T 195,198,207,222,225,231,240,249,267,270,288,297,330,336,339,342,348,

%U 351,354,357,363,369,372,381,396,399,402,405,411,429,432,465,468,477,480

%N Numbers n of the form 3*k such that partition number of n is also of the form 3*k.

%C Subset of A083214. Or, intersection of A083214 and A008585.

%p with(combinat): a:=proc(k): if numbpart(3*k) mod 3 = 0 then 3*k else fi end: seq(a(n),n=1..200); # _Emeric Deutsch_, Apr 16 2007

%t Select[Range[3,600,3],Mod[PartitionsP[ # ],3]==0&]

%Y Cf. A000041, A008585, A083214, A087183.

%K nonn

%O 1,1

%A _Zak Seidov_, Apr 05 2007