%I #18 Feb 20 2022 22:52:23
%S 1,-2,1,-2,0,1,1,-2,0,1,-2,0,0,0,1,4,-2,-2,0,0,1,-2,0,0,0,0,0,1,0,1,0,
%T -2,0,0,0,1,1,0,-2,0,0,0,0,0,1,4,-2,0,0,-2,0,0,0,0,1,-2,0,0,0,0,0,0,0,
%U 0,0,1,-2,4,1,-2,0,-2,0,0,0,0,0,1
%N T(n,k) = A007427(n/k) if k divides n, T(n,k) = 0 otherwise.
%H Andrew Howroyd, <a href="/A127173/b127173.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%F Square of A054525 as lower triangular matrix.
%F A007431(n) = Sum_{k=1, n} k*T(n,k).
%F A007428(n) = Sum_{k=1..n} mu(k)*T(n,k).
%e First few rows of the triangle:
%e 1;
%e -2, 1;
%e -2, 0, 1;
%e 1, -2, 0, 1;
%e -2, 0, 0, 0, 1;
%e 4, -2, -2, 0, 0, 1;
%e -2, 0, 0, 0, 0, 0, 1;
%e 0, 1, 0, -2, 0, 0, 0, 1;
%e 1, 0, -2, 0, 0, 0, 0, 0, 1;
%e 4, -2, 0, 0, -2, 0, 0, 0, 0, 1;
%e ...
%o (PARI) \\ here b(n) is A007427(n).
%o b(n)={sumdiv(n, d, moebius(d) * moebius(n/d))}
%o T(n,k)={if(n%k==0, b(n/k), 0)} \\ _Andrew Howroyd_, Feb 20 2022
%Y Row sums are A008683.
%Y Column 1 is A007427.
%Y Cf. A054525, A007431, A007428.
%K tabl,sign
%O 1,2
%A _Gary W. Adamson_, Jan 06 2007
%E Missing a(10)-a(14) and a(56) and beyond from _Andrew Howroyd_, Feb 20 2022