login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127145
Q(3,n), where Q(m,k) is defined in A127080 and A127137,
4
1, 1, 1, -2, -9, 4, 75, 24, -735, -816, 8505, 17760, -114345, -388800, 1756755, 9233280, -30405375, -242968320, 585810225, 7125511680, -12439852425, -232838323200, 288735522075, 8450546227200, -7273385294175, -339004760371200, 197646339515625, 14945696794828800, -5763367260275625
OFFSET
0,4
REFERENCES
V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
LINKS
FORMULA
See A127080 for e.g.f.
MAPLE
Q:= proc(n, k) option remember;
if k<2 then 1
elif `mod`(k, 2)=0 then (n-k+1)*Q(n+1, k-1) - (k-1)*Q(n+2, k-2)
else ( (n-k+1)*Q(n+1, k-1) - (k-1)*(n+1)*Q(n+2, k-2) )/n
fi; end;
seq( Q(3, n), n=0..30); # G. C. Greubel, Jan 30 2020
MATHEMATICA
Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[3, k], {k, 0, 30}] (* G. C. Greubel, Jan 30 2020 *)
PROG
(Sage)
@CachedFunction
def Q(n, k):
if (k<2): return 1
elif (mod(k, 2)==0): return (n-k+1)*Q(n+1, k-1) - (k-1)*Q(n+2, k-2)
else: return ( (n-k+1)*Q(n+1, k-1) - (k-1)*(n+1)*Q(n+2, k-2) )/n
[Q(3, n) for n in (0..30)] # G. C. Greubel, Jan 30 2020
CROSSREFS
Cf. A126965.
Column 3 of A127080.
Sequence in context: A268249 A268246 A268103 * A210423 A003725 A292952
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 24 2007
STATUS
approved