login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)! - (n)!!.
1

%I #12 Sep 08 2022 08:45:29

%S 0,1,4,21,112,705,4992,40215,362496,3627855,39912960,478991205,

%T 6226974720,87178156065,1307673722880,20922787860975,355687417774080,

%U 6402373671268575,121645100223037440,2432902007521910925

%N a(n) = (n+1)! - (n)!!.

%H Vincenzo Librandi, <a href="/A127111/b127111.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = A000142(n+1) - A006882(n). - _Michel Marcus_, Aug 15 2013

%p seq(factorial(n+1) - doublefactorial(n), n = 0..20); # _G. C. Greubel_, Jan 30 2020

%t Table[((n+1)!-(n)!!), {n,0, 20}]

%o (PARI) vector(21, n, my(m=n-1); if(m%2==0, (m+1)! - 2^(m/2)*(m/2)!, (m+1)! - m!/(2^((m-1)/2)*((m-1)/2)!)) ) \\ _G. C. Greubel_, Jan 30 2020

%o (Magma) DoubleFactorial:=func< n | &*[n..2 by -2] >;

%o [Factorial(n+1) - DoubleFactorial(n): n in [0..20]]; // _G. C. Greubel_, Jan 30 2020

%o (Sage) [factorial(n+1) - n.multifactorial(2) for n in (0..20)] # _G. C. Greubel_, Jan 30 2020

%K easy,nonn

%O 0,3

%A _Zerinvary Lajos_, Mar 21 2007