login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127058
Triangle, read by rows, defined by: T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) for n > k >= 0, with T(n,n) = n+1.
3
1, 2, 2, 10, 6, 3, 74, 42, 12, 4, 706, 414, 108, 20, 5, 8162, 5058, 1332, 220, 30, 6, 110410, 72486, 19908, 3260, 390, 42, 7, 1708394, 1182762, 342252, 57700, 6750, 630, 56, 8, 29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9, 576037442
OFFSET
0,2
COMMENTS
Column 0 is A000698, the number of shellings of an n-cube, divided by 2^n n!.
Column 1 is A115974, the number of Feynman diagrams of the proper self-energy at perturbative order n.
EXAMPLE
Other recurrences exist, as shown by:
column 0 = A000698: T(n,0) = (2n+1)!! - Sum_{k=1..n} (2k-1)!!*T(n-k,0);
column 1 = A115974: T(n,1) = T(n+1,0) - Sum_{k=0..n-1} T(k,1)*T(n-k,0).
Illustrate the recurrence:
T(n,k) = Sum_{j=0..n-k-1) T(j+k,k)*T(n-j,k+1) (n > k >= 0)
at column k=1:
T(2,1) = T(1,1)*T(2,2) = 2*3 = 6;
T(3,1) = T(1,1)*T(3,2) + T(2,1)*T(2,2) = 2*12 + 6*3 = 42;
T(4,1) = T(1,1)*T(4,2) + T(2,1)*T(3,2) + T(3,1)*T(2,2) = 2*108 + 6*12 + 42*3 = 414;
at column k=2:
T(3,2) = T(2,2)*T(3,3) = 3*4 = 12;
T(4,2) = T(2,2)*T(4,3) + T(3,2)*T(3,3) = 3*20 + 12*4 = 108;
T(5,2) = T(2,2)*T(5,3) + T(3,2)*T(4,3) + T(4,2)*T(3,3) = 3*220 + 12*20 + 108*4 = 1332.
Triangle begins:
1;
2, 2;
10, 6, 3;
74, 42, 12, 4;
706, 414, 108, 20, 5;
8162, 5058, 1332, 220, 30, 6;
110410, 72486, 19908, 3260, 390, 42, 7;
1708394, 1182762, 342252, 57700, 6750, 630, 56, 8;
29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9; ...
MATHEMATICA
T[n_, k_]:= If[k==n, n+1, Sum[T[j+k, k]*T[n-j, k+1], {j, 0, n-k-1}]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
PROG
(PARI) {T(n, k)=if(n==k, n+1, sum(j=0, n-k-1, T(j+k, k)*T(n-j, k+1)))}
(Sage)
def T(n, k):
if (k==n): return n+1
else: return sum(T(j+k, k)*T(n-j, k+1) for j in (0..n-k-1))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 03 2019
CROSSREFS
Columns: A000698, A115974, A127059.
Row sums: A127060.
Cf. A001147 ((2n-1)!!).
Sequence in context: A083457 A163808 A223126 * A242002 A094359 A293060
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 04 2007
STATUS
approved