login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(floor((3n+4)/2),floor(n/2)).
3

%I #22 Dec 29 2023 11:49:17

%S 1,1,5,6,28,36,165,220,1001,1365,6188,8568,38760,54264,245157,346104,

%T 1562275,2220075,10015005,14307150,64512240,92561040,417225900,

%U 600805296,2707475148,3910797436,17620076360,25518731280,114955808528

%N a(n) = binomial(floor((3n+4)/2),floor(n/2)).

%C With offset 2, the number of compositions of n into floor(n/2) parts, which is an upper bound for A007874.

%H T. D. Noe, <a href="/A127040/b127040.txt">Table of n, a(n) for n=0..200</a>

%F From _Benedict W. J. Irwin_, Aug 16 2016: (Start)

%F G.f.: (-1 + (2*cos(arcsin(3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2) + 3*x^3*2F1(4/3,5/3;5/2;27*x^2/4))/(3*x^2).

%F E.g.f.: 2F3(4/3,5/3;1/2,3/2,2;27*x^2/16) + x*2F3(4/3,5/3;1,3/2,5/2;27*x^2/16).

%F (End)

%F D-finite with recurrence 8*(n+2)*(n+1)*a(n) -84*(n-1)*(n+1)*a(n-1) +6*(-33*n^2+54*n-8)*a(n-2) +9*(63*n^2-63*n-16)*a(n-3) +108*(3*n-5)*(3*n-7)*a(n-4)=0. - _R. J. Mathar_, Feb 08 2021

%p seq(sum(binomial(n+k, k-1), k=0..ceil((n+1)/2)), n=0..28); # _Zerinvary Lajos_, Apr 11 2007

%t CoefficientList[Series[(-1 + (2 Cos[1/3 ArcSin[(3 Sqrt[3] x)/2]])/Sqrt[4 - 27 x^2] + 3 x^3 Hypergeometric2F1[4/3, 5/3, 5/2, (27 x^2)/4])/(3 x^2), {x, 0, 20}], x] (* _Benedict W. J. Irwin_, Aug 16 2016 *)

%t Table[Binomial[Floor[(3 n + 4)/2], Floor[n/2]], {n, 0, 28}] (* _Michael De Vlieger_, Aug 18 2016 *)

%o (PARI) a(n) = binomial((3*n+4)\2, n\2); \\ _Michel Marcus_, Sep 09 2016

%Y Cf. A004319 (bisection), A025174 (bisection), A099578.

%K nonn

%O 0,3

%A _T. D. Noe_, Jan 03 2007