The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127022 Let f(k) = exp(Pi*sqrt(k)); sequence gives numbers k such that ceiling(f(k)) - f(k) < 1/10^3. 12
 25, 37, 43, 58, 67, 74, 163, 232, 522, 719, 1169, 1245, 1467, 1850, 1872, 2086, 3368, 4075, 5773, 7685, 7802, 7942, 8325, 9728, 10032, 11682, 12158, 13574, 17908, 18505, 19183, 19396, 20039, 20244, 20584, 22241, 23773, 23778, 23834, 25004, 27573, 28071, 32497 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS JungHwan Min, Table of n, a(n) for n = 1..5000 MATHEMATICA a = {}; Do[If[(1 - (Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]]) > 0) && (1 - ( Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]])< 10^(-3)), AppendTo[a, x]], {x, 1, 1000}]; a Reap[Block[{\$MaxExtraPrecision = Infinity}, Do[If[N[FractionalPart[Exp[Pi Sqrt[n]]], 8] > .999, Sow[n]], {n, 2000}]]][[-1, 1]] (* JungHwan Min, Mar 20 2016 *) PROG (PARI) default(realprecision, 500); c(n) = exp(Pi*sqrt(n)); for(n=1, 50000, if( ceil(c(n)) - c(n) <1/1000, print1(n", "))) \\ G. C. Greubel, Jun 02 2019 (Magma) SetDefaultRealField(RealField(500)); R:= RealField(); [n: n in [1..50000] | Ceiling(Exp(Pi(R)*Sqrt(n))) - Exp(Pi(R)*Sqrt(n)) lt 1/1000]; // G. C. Greubel, Jun 02 2019 CROSSREFS Cf. A035484, A127023, A127024, A127025. Sequence in context: A061863 A079270 A253025 * A253018 A120148 A038516 Adjacent sequences: A127019 A127020 A127021 * A127023 A127024 A127025 KEYWORD nonn AUTHOR Artur Jasinski, Jan 03 2007 EXTENSIONS a(16)-a(43) added (from JungHwan Min's b-file) by Jon E. Schoenfield, Sep 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 22:09 EDT 2024. Contains 372782 sequences. (Running on oeis4.)