%I #8 Mar 30 2012 17:27:50
%S 0,1,8,7,22,21,6,19,20,41,40,19,18,39,38,67,68,105,104,67,66,37,38,17,
%T 16,37,36,35,62,63,98,99,64,101,100,99,142,141,98,97,140,139,96,97,62,
%U 61,34,33,60,61,96,95,138,137,94,93,136,137,188,187,246,247,314,315,248
%N A dragon curve is drawn on an Ulam spiral; a(n) is the integer written in the cell reached at step n.
%C The spiral consists of the numbers 0, 1, 2, ... written in a spiral on squared paper. The dragon curve is a self-similar curve starting at the same point. See the illustration for more information.
%H Philippe Lallouet, <a href="/A126937/a126937.pdf">Spreadsheet with illustration of initial terms</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DragonCurve.html">Dragon Curve</a> [From _Klaus Brockhaus_, Aug 07 2008]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeSpiral.html">Prime Spiral</a> [From _Klaus Brockhaus_, Aug 07 2008]
%Y Cf. A014577 (regular paper-folding [or dragon curve] sequence). [From _Klaus Brockhaus_, Aug 07 2008]
%K nonn
%O 0,3
%A Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Mar 18 2007
%E Edited by _N. J. A. Sloane_, Mar 28 2007
%E a(9) - a(64) from _Klaus Brockhaus_, Aug 07 2008