login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coordination sequence for 8-dimensional cyclotomic lattice Z[zeta_15].
0

%I #9 Oct 01 2023 14:33:46

%S 1,15,120,675,2940,10425,31320,82365,194520,420795,846600,1602975,

%T 2883060,4962165,8221800,13178025,20514480,31120455,46134360,66992955,

%U 95486700,133821585,184687800,251335605,337658760,448285875,588680040,765247095

%N Coordination sequence for 8-dimensional cyclotomic lattice Z[zeta_15].

%H M. Beck and S. Hosten, <a href="http://arxiv.org/abs/math/0508136">Cyclotomic polytopes and growth series of cyclotomic lattices</a>, arXiv math.CO/0508136

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -70, 56, -28, 8, -1).

%F G.f.: (x^8+7*x^7+28*x^6+79*x^5+130*x^4+79*x^3+28*x^2+7*x+1)/(1-x)^8.

%t CoefficientList[Series[(x^8+7x^7+28x^6+79x^5+130x^4+79x^3+28x^2+7x+1)/(1-x)^8,{x,0,30}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,120,675,2940,10425,31320,82365,194520},40] (* _Harvey P. Dale_, Oct 01 2023 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Mar 17 2007