login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126853
Table read by antidiagonals: B(n,m) is the numerator of the Bernoulli polynomial of order m and degree n evaluated at x=0.
0
1, 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, 0, 5, -3, 1, 0, -1, -1, 2, -2, 1, 0, 0, 1, -9, 11, -5, 1, 0, 1, 1, 19, -6, 35, -3, 1, 0, 0, -5, -3, 251, -25, 17, -7, 1, 0, -1, -1, -16, -9, 24, -45, 35, -4, 1, 0, 0, 7, 5, 221, -475, 274, -147, 46, -9, 1, 0, 5, 3, 19, 11, 4315, -120, 1624, -56, 39, -5, 1, 0, 0, -15, -63, -199, -475, 19087, -294, 967, -81, 145, -11, 1
OFFSET
0,13
COMMENTS
Absolute values of the diagonal are in A002657. Not to be confused with the poly-Bernoulli numbers.
Let H(k) = Sum_{i=1..k+1} 1/i. Then Seq((-1)^k*T(k,k+2),k=0..) = Seq(k!*H(k),k=0..) = 1,3/2,11/3,25/2,274/5,294,.. (Cf. A160039 and A014973). [Peter Luschny, Apr 30 2009]
FORMULA
E.g.f.: [t/(exp(t)-1)]^m*exp(t*x)=sum_{n=0..infinity} B_n^m(x)*t^n/n!.
EXAMPLE
Table of fractions B(n,m) is read along antidiagonals and starts in row n=0 and column m=0:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, -1/2, -1, -3/2, -2, -5/2, -3, -7/2, ...
0, 1/6, 5/6, 2, 11/3, 35/6, 17/2, 35/3, ...
0, 0, -1/2, -9/4, -6, -25/2, -45/2, -147/4, ...
0, -1/30, 1/10, 19/10, 251/30, 24, 274/5, 1624/15, ...
0, 0, 1/6, -3/4, -9, -475/12, -120, -294, ...
0, 1/42, -5/42, -16/21, 221/42, 4315/84, 19087/84, 720, ...
0, 0, -1/6, 5/4, 11/3, -475/12, -1375/4, -36799/24, ...
MATHEMATICA
B[n_, m_] := n! SeriesCoefficient[(t/(E^t-1))^m E^(t x), {t, 0, n}] /. x -> 0 // Numerator; Table[B[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
CROSSREFS
Sequence in context: A282887 A265729 A181886 * A286127 A201654 A265606
KEYWORD
frac,sign,tabl
AUTHOR
R. J. Mathar, May 13 2007, May 17 2007
STATUS
approved