login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126836
Ramanujan numbers (A000594) read mod 7.
3
1, 4, 0, 5, 0, 0, 0, 4, 2, 0, 1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 4, 4, 0, 4, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 2, 5, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0
OFFSET
1,2
LINKS
R. P. Bambah, Ramanujan’s function tau(n)—A congruence property, Bull. Amer. Math. Soc. 53 (1947), 764-765.
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
a(n) = n*sigma_3(n) mod 7. - Michel Marcus, Apr 25 2016
MATHEMATICA
Mod[RamanujanTau@ #, 7] &@ Range@ 120 (* Michael De Vlieger, Apr 25 2016 *)
PROG
(PARI) a(n) = ramanujantau(n) % 7; \\ Amiram Eldar, Jan 05 2025
CROSSREFS
Cf. this sequence (mod 7^1), A126837 (mod 7^2), A126838 (mod 7^3).
Sequence in context: A005075 A103638 A129821 * A055241 A055242 A200295
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved