login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ramanujan numbers (A000594) read mod 256.
1

%I #9 Jan 05 2025 01:06:06

%S 1,232,252,64,222,96,152,0,21,48,84,0,54,192,136,0,178,8,44,128,160,

%T 32,72,0,167,240,152,0,102,64,96,0,176,80,208,64,62,224,40,0,122,0,

%U 180,0,54,64,16,0,169,88,56,128,110,192,216,0,80,112,228,0,198,0,120,0,212,128,188

%N Ramanujan numbers (A000594) read mod 256.

%H Amiram Eldar, <a href="/A126818/b126818.txt">Table of n, a(n) for n = 1..10000</a>

%H George E. Andrews and Bruce C. Berndt, <a href="https://doi.org/10.1007/978-1-4614-3810-6_5">Ramanujan's Unpublished Manuscript on the Partition and Tau Functions</a>, in: Ramanujan's Lost Notebook, Part III, Springer, New York, NY, 2012.

%H R. P. Bambah and S. Chowla, <a href="https://doi.org/10.1112/jlms/s1-22.2.140">The Residue of Ramanujan's Function tau(n) to the Modulus 2^8</a>, Journal of the London Mathematical Society, Vol s1-22, No. 2 (1947), pp. 140-147.

%H H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1007/978-3-540-37802-0_1">On l-adic representations and congruences for coefficients of modular forms</a>, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.

%F a(n) == sigma_11(n) (mod 256) for n odd (Bambah and Chowla, 1947; Andrews and Berndt, 2012, eq. (5.12.26), p. 118). - _Amiram Eldar_, Jan 05 2025

%t a[n_] := Mod[RamanujanTau[n], 256]; Array[a, 100] (* _Amiram Eldar_, Jan 05 2025 *)

%o (PARI) a(n) = ramanujantau(n) % 256; \\ _Amiram Eldar_, Jan 05 2025

%Y Cf. A000594, A013959.

%K nonn,changed

%O 1,2

%A _N. J. A. Sloane_, Feb 25 2007