login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126783 Smallest k > 1 such that (sum of digits of k^n)*(sum of digits of k^(n+1)) = k, or 0 if no such k exists. 4
80, 80, 70, 3905, 4004, 700, 19278, 32761, 5600, 8100, 24940, 10600, 56330, 68040, 81760, 149705, 116180, 126360, 123580, 0, 65500, 311003, 205030, 114400, 454951, 317350, 312170, 296270, 359380, 332750, 699785, 723338, 498150, 499130, 901368 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For each n there is an upper bound (see A130179) for values of k such that (sum of digits of k^n)*(sum of digits of k^(n+1)) = k, hence the number of such k is finite, possibly zero, (see A130180) and if the number is not zero there is a largest one (see A130181).

LINKS

Klaus Brockhaus, Table of n, a(n) for n=1..54

EXAMPLE

For n = 2 the smallest such k is 80: 80^2 = 6400 and 6+4+0+0 = 10; 80^3 = 512000 and 5+1+2+0+0+0 = 8; 10*8 = 80. Hence a(2) = 80.

For n = 3 the smallest such k is 70: 70^3 = 343000 and 3+4+3+0+0+0 = 10; 70^4 = 24010000 and 2+4+0+1+0+0+0+0 = 7; 10*7 = 70. Hence a(3) = 70.

MAPLE

P:=proc(n) local a, i, j, k, w, x; for a from 1 by 1 to n do for i from 1 by 1 to n*n do w:=0; k:=i^a; j:=0; x:=i^(a+1); while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; while x>0 do j:=j+x-(trunc(x/10)*10); x:=trunc(x/10); od; if (i=w*j and i>1) then print(i); break; fi; od; od; end: P(1000);

CROSSREFS

Cf. A130179, A130180, A130181.

Sequence in context: A207144 A200720 A220088 * A255477 A114836 A069086

Adjacent sequences:  A126780 A126781 A126782 * A126784 A126785 A126786

KEYWORD

hard,nonn,base

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Apr 17 2007

EXTENSIONS

Edited and a(17) to a(35) added by Klaus Brockhaus, May 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 21:33 EDT 2017. Contains 292500 sequences.