The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126783 Smallest k > 1 such that (sum of digits of k^n)*(sum of digits of k^(n+1)) = k, or 0 if no such k exists. 4
 80, 80, 70, 3905, 4004, 700, 19278, 32761, 5600, 8100, 24940, 10600, 56330, 68040, 81760, 149705, 116180, 126360, 123580, 0, 65500, 311003, 205030, 114400, 454951, 317350, 312170, 296270, 359380, 332750, 699785, 723338, 498150, 499130, 901368 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For each n there is an upper bound (see A130179) for values of k such that (sum of digits of k^n)*(sum of digits of k^(n+1)) = k, hence the number of such k is finite, possibly zero, (see A130180) and if the number is not zero there is a largest one (see A130181). LINKS Klaus Brockhaus, Table of n, a(n) for n=1..54 EXAMPLE For n = 2 the smallest such k is 80: 80^2 = 6400 and 6+4+0+0 = 10; 80^3 = 512000 and 5+1+2+0+0+0 = 8; 10*8 = 80. Hence a(2) = 80. For n = 3 the smallest such k is 70: 70^3 = 343000 and 3+4+3+0+0+0 = 10; 70^4 = 24010000 and 2+4+0+1+0+0+0+0 = 7; 10*7 = 70. Hence a(3) = 70. MAPLE P:=proc(n) local a, i, j, k, w, x; for a from 1 by 1 to n do for i from 1 by 1 to n*n do w:=0; k:=i^a; j:=0; x:=i^(a+1); while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; while x>0 do j:=j+x-(trunc(x/10)*10); x:=trunc(x/10); od; if (i=w*j and i>1) then print(i); break; fi; od; od; end: P(1000); CROSSREFS Cf. A130179, A130180, A130181. Sequence in context: A207144 A200720 A220088 * A255477 A296878 A114836 Adjacent sequences:  A126780 A126781 A126782 * A126784 A126785 A126786 KEYWORD hard,nonn,base AUTHOR Paolo P. Lava and Giorgio Balzarotti, Apr 17 2007 EXTENSIONS Edited and a(17) to a(35) added by Klaus Brockhaus, May 14 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 03:28 EDT 2022. Contains 354110 sequences. (Running on oeis4.)