%I #11 Apr 02 2024 14:33:45
%S 1,1,0,0,1,0,0,0,1,1,0,0,2,4,0,0,0,1,8,10,2,0,0,2,26,48,36,0,0,0,1,58,
%T 279,352,159,4,0,0,2,185,1715,4463,3696,1056,0,0,0,1,500,11464,63363,
%U 109760,63605,12378,9,0,0,2,1677,87114,1066463,3835747,4541399,1909444,274725,0
%N Triangle read by rows: T(n,k) (n>=0, k=0..n) gives number of connected graphs on n nodes with edge chromatic number k.
%H Keith M. Briggs, <a href="http://keithbriggs.info/cgt.html">Combinatorial Graph Theory</a>
%e Triangle begins:
%e n\k| 0 1 2 3 4 5 6 7 8 9 10
%e ---+-------------------------------------------------------------
%e 0 | 1
%e 1 | 1 0
%e 2 | 0 1 0
%e 3 | 0 0 1 1
%e 4 | 0 0 2 4 0
%e 5 | 0 0 1 8 10 2
%e 6 | 0 0 2 26 48 36 0
%e 7 | 0 0 1 58 279 352 159 4
%e 8 | 0 0 2 185 1715 4463 3696 1056 0
%e 9 | 0 0 1 500 11464 63363 109760 63605 12378 9
%e 10 | 0 0 2 1677 87114 1066463 3835747 4541399 1909444 274725 0
%Y Cf. A001349 (row sums).
%K nonn,tabl
%O 0,13
%A _N. J. A. Sloane_, Feb 16 2007