login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = -n^2 + 9*n + 53.
5

%I #25 Nov 02 2024 18:22:02

%S 53,61,67,71,73,73,71,67,61,53,43,31,17,1,-17,-37,-59,-83,-109,-137,

%T -167,-199,-233,-269,-307,-347,-389,-433,-479,-527,-577,-629,-683,

%U -739,-797,-857,-919,-983,-1049,-1117,-1187,-1259,-1333,-1409,-1487,-1567,-1649,-1733,-1819,-1907,-1997,-2089,-2183,-2279

%N a(n) = -n^2 + 9*n + 53.

%C Quadratic equation derived from the four primes 61, 67, 71, 73 using the method of common differences. Many of the initial terms are primes.

%H Michael M. Ross, <a href="http://www.naturalnumbers.org">Natural Numbers</a>.

%H Robert Sacks, <a href="http://www.numberspiral.com/p/common_diff.html">Number Spiral: Method of Common Differences</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F From _Arkadiusz Wesolowski_, Oct 24 2013: (Start)

%F a(n) = -A186950(n+19).

%F G.f.: (53 - 98*x + 43*x^2)/(1 - x)^3. (End)

%F From _Elmo R. Oliveira_, Nov 02 2024: (Start)

%F E.g.f.: (53 + 8*x - x^2)*exp(x).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

%e For n=8, -1*8^2 + 9*8 + 53 = 61.

%t Table[ - n^2 + 9*n + 53, {n, 0, 46}] (* _Arkadiusz Wesolowski_, Oct 24 2013 *)

%t LinearRecurrence[{3,-3,1},{53,61,67},60] (* _Harvey P. Dale_, Apr 04 2024 *)

%o (PARI) a(n) = -n^2 + 9*n + 53 \\ _Michel Marcus_, Jun 30 2013

%o (Magma) [-n^2+9*n+53 : n in [0..46]]; // _Arkadiusz Wesolowski_, Oct 24 2013

%Y Cf. A186950.

%K sign,easy

%O 0,1

%A _Michael M. Ross_, Mar 13 2007