login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference x-y of generator pairs (x,y) {x and y coprime and not both odd, x>y} of primitive Pythagorean triangles, sorted on values x+y (A126611), then on x-y.
1

%I #10 Nov 07 2019 23:30:59

%S 1,1,3,1,3,5,1,5,7,1,3,5,7,9,1,3,5,7,9,11,1,7,11,13,1,3,5,7,9,11,13,

%T 15,1,3,5,7,9,11,13,15,17,1,5,11,13,17,19,1,3,5,7,9,11,13,15,17,19,21,

%U 1,3,7,9,11,13,17,19,21,23,1,5,7,11

%N Difference x-y of generator pairs (x,y) {x and y coprime and not both odd, x>y} of primitive Pythagorean triangles, sorted on values x+y (A126611), then on x-y.

%C This sequence gives the consecutive rows n = 2*m + 1, for m >= 1, of the array A216319. See the example. - _Wolfdieter Lang_, Oct 24 2019

%e From _Wolfdieter Lang_, Oct 24 2019: (Start)

%e From the array A216319 with n = 2*m + 1 = x + y, for m >= 1, the (x, y) values giving the terms of the present sequence as values x-y are:

%e m, n \ k 1 2 3 4 5 6 ... x-y values

%e --------------------------------------------------------------------

%e 1, 3: (2,1) 1

%e 2, 5: (3,2) (4,1) 1 3

%e 3, 7: (4,3) (5,2) (6,1) 1 3 5

%e 4, 9: (5,4) (7,2) (8,1) 1 5 7

%e 5, 11: (6,5) (7,4) (8,3) (9,2) (10,1) 1 3 5 7 9

%e 6, 13: (7,6) (8,5) (9,4) (10,3) (11,2) (12,1) 1 3 5 7 9 11

%e 7, 15: (8,7) (11,4) (13,2) (14,1) 1 7 11 13

%e ... (End)

%Y Cf. A094192, A094193, A126611, A216319.

%K nonn,easy

%O 1,3

%A _Lekraj Beedassy_, Feb 08 2007