login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126463
Column 3 of triangle A126460; equals the number of subpartitions of the partition {(k^2 + 9*k + 20)*k/6, k>=0}.
4
1, 1, 10, 195, 5940, 257300, 14989472, 1130000385, 107089958760, 12470885416545, 1751753684302150, 292264756622072214, 57165584968923450000, 12962148519535236156640, 3374220800446022166695530
OFFSET
0,3
FORMULA
G.f.: 1/(1-x) = Sum_{k>=0} a(k)*x^k*(1-x)^[(k^2 + 12*k + 41)*k/6].
EXAMPLE
Equals the number of subpartitions of the partition:
{(k^2 + 12*k + 41)*k/6, k>=0} = [0,9,23,43,70,105,149,203,268,345,...]
as illustrated by g.f.:
1/(1-x) = 1*(1-x)^0 + 1*x*(1-x)^9 + 10*x^2*(1-x)^23 + 195*x^3*(1-x)^43 + 5940*x^4*(1-x)^70 + 257300*x^5*(1-x)^105 + 14989472*x^6*(1-x)^149 + 1130000385*x^7*(1-x)^203 ...
PROG
(PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x+x*O(x^n))^(1+(k^2+12*k+41)*k/6)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2006
STATUS
approved