Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 31 2024 19:03:46
%S 1,6,16,44,122,340,950,2658,7442,20844,58392,163594,458356,1284250,
%T 3598338,10082246,28249720,79153804,221783810,621424108,1741191198,
%U 4878708658,13669836930,38302030548,107319902744,300703682402
%N Number of base 6 n-digit numbers with adjacent digits differing by one or less.
%C Empirical: a(base,n) = a(base-1,n) + 3^(n-1) for base >= n; a(base,n) = a(base-1,n) + 3^(n-1) - 2 when base = n-1.
%C Leading 0's are allowed. - _Robert Israel_, Aug 12 2019
%H Robert Israel, <a href="/A126360/b126360.txt">Table of n, a(n) for n = 0..2231</a>
%H Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, and Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551v1 [math.CO], 2008.
%F From _Colin Barker_, Nov 26 2012: (Start)
%F Conjecture: a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3) for n > 3.
%F G.f.: -(x^3 + 5*x^2 - 2*x - 1)/(x^3 + 3*x^2 - 4*x + 1). (End)
%F From _Robert Israel_, Aug 12 2019: (Start)
%F a(n) = e^T A^(n-1) e for n >= 1, where A is the 6 X 6 matrix with 1 on the main diagonal and first super- and subdiagonals, 0 elsewhere, and e the column vector (1,1,1,1,1,1).
%F Barker's conjecture follows from the fact that (A^3 - 4*A^2 + 3*A + 1) e = 0. (End)
%p A:=LinearAlgebra:-ToeplitzMatrix([1,1,0,0,0,0],symmetric):
%p e:= Vector(6,1):
%p 1, seq(e^%T . A^n . e, n=0..30); # _Robert Israel_, Aug 12 2019
%o (S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>1)+($[i+1]`-$[i]`>1))
%K nonn,base
%O 0,2
%A _R. H. Hardin_, Dec 26 2006