login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, of the limit of coefficients of q in {[x^m] W(x,q)} as m grows when arranged into a triangle where row n is multiplied by n! for n>=1.
5

%I #3 Mar 30 2012 18:37:02

%S 1,1,2,7,12,12,85,88,130,152,1071,1140,1665,1845,2430,16891,21786,

%T 24501,32066,36066,45222,363378,450506,509110,631883,718914,866306,

%U 991571,9545369,10821336,13004356,14732096,17438450,19851112,23380260,26447976

%N Triangle, read by rows, of the limit of coefficients of q in {[x^m] W(x,q)} as m grows when arranged into a triangle where row n is multiplied by n! for n>=1.

%e The function W that satisfies: W(x,q) = exp( q*x*W(q*x,q) ) begins:

%e W(x,q) = 1 + q*x + (1/2 + q)*q^2*x^2 +

%e (1/6 + 1*q + 1/2*q^2 + 1*q^3)*q^3*x^3 +

%e (1/24 + 1/2*q + 1*q^2 + 7/6*q^3 + 1*q^4 + 1/2*q^5 + 1*q^6)*q^4*x^4 +...

%e Coefficients of q in {[x^n] W(x,q)} tend to a limit when read backwards:

%e n=1: (1/2 + q)*q^2 read backwards: [1, 1/2];

%e n=2: (1/6 + 1*q + 1/2*q^2 + 1*q^3)*q^3 read backwards: [1, 1/2, 1, 1/6];

%e n=3: (1/24 + 1/2*q + 1*q^2 + 7/6*q^3 + 1*q^4 + 1/2*q^5 + 1*q^6)*q^4 read backwards: [1, 1/2, 1, 7/6, 1, 1/2, 1/24].

%e The limit of fractional coefficients may be formed into a triangle:

%e 1,

%e 1/2, 1,

%e 7/6, 2, 2,

%e 85/24, 11/3, 65/12, 19/3,

%e 357/40, 19/2, 111/8, 123/8, 81/4, 16891/720, ...

%e When row n=1,2,3,.. is multiplied by n! we obtain this integer triangle:

%e 1;

%e 1, 2;

%e 7, 12, 12;

%e 85, 88, 130, 152;

%e 1071, 1140, 1665, 1845, 2430;

%e 16891, 21786, 24501, 32066, 36066, 45222;

%e 363378, 450506, 509110, 631883, 718914, 866306, 991571;

%e 9545369, 10821336, 13004356, 14732096, 17438450, 19851112, 23380260, 26447976;

%e 279725995, 316750608, 368695521, 417632601, 484621893, 546334029, 632562585, 713249235, 820357488;

%e 9251279911, 10612100290, 11923578775, 13648746400, 15329052835, 17462968972, 19598497945, 22282099420, 24949824310, 28305482450; ...

%Y Cf. A126341, A126342, A126265; A126344 (column 1), A126345 (diagonal), A126346 (row sums).

%K nonn,tabl

%O 1,3

%A _Paul D. Hanna_, Dec 25 2006