login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014486-index for the Dyck path "derived" from the n-th Dyck path encoded by A014486(n).
3

%I #10 Dec 25 2018 11:31:51

%S 0,0,1,0,2,1,1,1,0,4,2,2,2,1,2,1,2,3,1,1,1,1,0,9,4,4,4,2,4,2,4,5,2,2,

%T 2,2,1,4,2,2,2,1,4,2,6,7,3,2,2,3,1,2,1,2,3,1,2,3,3,1,1,1,1,1,0,23,9,9,

%U 9,4,9,4,9,10,4,4,4,4,2,9,4,4,4,2,9,4,11,12,5,4,4,5,2,4,2,4,5,2,4,5,5

%N A014486-index for the Dyck path "derived" from the n-th Dyck path encoded by A014486(n).

%C According to Vaillé, the concept of "dérivation des ponts" is defined by Kreweras, in "Sur les éventails de segments" paper.

%H G. Kreweras, <a href="http://www.numdam.org/item?id=BURO_1970__15__3_0">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationelle, Cahier no. 15, Paris, 1970, pp. 3-41.

%H J. Vaillé, <a href="http://dx.doi.org/10.1006/eujc.1996.0089">Une Bijection Explicative de Plusieurs Propriétés Remarquables des Ponts</a>, European J. Combin. 18 (1997), no. 1, 117-124.

%F a(n) = A125986(A126309(A125985(n))).

%o (MIT Scheme, function rising-list->binexp given in A125985): (define (A126310 n) (A080300 (rising-list->binexp (reverse! (map -1+ (map length (A126310-aux1 (A036044 (A014486 n)))))))))

%o (define (A126310-aux1 n) (let loop ((n n) (vs (list)) (u 0) (d 0)) (cond ((zero? n) (if (null? vs) vs (reverse! (cdr vs)))) ((= 2 (modulo n 4)) (loop (/ n 2) (cons (list (+ 1 u)) vs) (+ u 1) d)) ((= 1 (modulo n 4)) (add-valley-abscisses! (+ d 1) vs) (loop (/ (- n 1) 2) vs u (+ d 1))) ((odd? n) (loop (/ (- n 1) 2) vs u (+ d 1))) (else (loop (/ n 2) vs (+ u 1) d)))))

%o (define (add-valley-abscisses! valley-abscisse peak-ordonnees) (for-each (lambda (s) (append! s (list valley-abscisse))) (keep-matching-items peak-ordonnees (lambda (po) (>= (car po) valley-abscisse)))))

%Y Cf. A125986, A126309, A125985.

%K nonn

%O 0,5

%A _Antti Karttunen_, Jan 02 2007